NAYLOR PLASTICS Made in the UK Excellent Construction Products

MetroDrain pipes DN150-600

Environmental Product Declaration (EPD)

In accordance with EN 15804+A2 & ISO 14025 / 21930

Scope

This document is an Environment Product Declaration of Naylor MetroDrain pipes from Cradle-to-Grave for the expected 50-year service life in accordance with MCHW series 500 and BBA. This is from raw material extraction to the end-of-life process for the product. The environmental impact will be recorded during each step and assessed at the end of the document to show where most emissions are created. The environmental burdens are calculated in relation to a functional unit. Manual labour is not included in the emissions. Operational and maintenance emissions are out of scope for the MetroDrain pipes as maintenance is not needed.

Manufacturer information

Manufacturer	Naylor Drainage Ltd
Address	Clough Green, Cawthorne, Barnsley S75 4AD
E-Mail	info@naylor.co.uk
Website	www.naylor.co.uk
Product Category Rules	This EPD uses CEN Standard EN 15804 as the core PCR
EPD Standards	This EPD is in accordance with the EN 15804+A2 and ISO 14025 standards
Reference service life	50 years

Reference service life	50 years
Declared unit	1kg of HDPE pipe
EPD type	Cradle-to-gate with modules C1-C4 and module D
Background database	Ecolnvent 3.6
Date of EPD and Validity	July 2022 – July 2027

Independent verification of the declaration and data according to EN ISO 14025:2010

System Boundary

In accordance with the EN15804:2012+A2:2019 requirements, this document is cradle-to-gate with options, modules C1-C4 and module D. This includes the processes covered in manufacturing, construction, use and end-of-life stages as well as considering the benefits and loads beyond the system boundary scenario.

The material use of 1kg HDPE is 70% recycled and 30% virgin material.

Product application

MetroDrain pipes are surface and underwater drainage in the following pipe diameters: 150mm, 225mm, 300mm, 375mm, 450mm and 600mm.

Product raw material consumption

Material	% Of product	Usability			
Ivialeria	% Of product	Renewable	Non-renewable	Recycled	
Plastic	100%			Х	

Environmental parameters derived from LCA

Product stage: Raw material extraction and processing, transportation to manufacturer, Manufacturing.

- Production of raw material for HDPE pipes
- Transport of HDPE pipe raw material to converter
- Extrusion and packaging of pipes

Construction stage: Includes all energy provisions, waste management processes and during construction up to waste disposal.

- Transport of HDPE drainage pipe system to the location
- Installation of HDPE drainage pipe system

Use stage (Maintenance and operational use): Includes transport and all energy provisions, waste management processes up to waste for the final disposal during this use stage.

- Operational use of HDPE drainage pipe
- Maintenance of HDPE drainage pipe

End of life stage: Includes all energy provisions during the end-of-life stage

- Extraction of HDPE drainage pipe systems after 50 years of expected service life
- Transport of HDPE drainage pipe system after 50 years of expected service life to end of life
- End of life treatment of HDPE drainage pipe

Product Stage	 Extraction of Raw Materials for HDPE pipes Transportation of Raw materials to factory Production of HDPE pipes
Construction Stage	 Transport HDPE pipes to trenches Insatllation of HDPE pipes in required location
Use Stage	• Usage and maintenance of HDPE pipes in required location
End- of-life	 Disassembly of HDPE pipes after service life Transportation of HDPE pipes to End-of-Life treatment End-of-Life waste treatment of complete HDPE pipes

Parameters describing Environmental impacts

Impact Category	Global warming potential - Fossil	Global warming potential - Biogenic	Global warming potential - LULUC	Ozone depletion depletion	Acidification potential	Eutrophication potential - Fresh water	Eutrophication potential - Marine	Eutrophication potential - Terrestrial	Photchemical oxdiation creation potential
	kgCO2e	kgCO2e	kgCO2e	kg CFC-11 eq	Mol H+ eq	kg Po4 eq	kg N eq	Mol N eq	kg NMVOC nt
Product stage	2.27E	4.82E-02	8.67E-04	6.8E-07	8.8E-03	7.99E-05	2.04E-03	2.23E-02	9.14E-03
Construction stage	9.06E-01	8.58E-01	3.67E-05	4.75E-08	2.19E-03	2.92E-06	9.8E-04	1.04E-02	2.98E-03
Use stage	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
End of life stage	1.56E	1.68E-04	2.92E-05	4.2E-08	2.15E-03	1.18E-06	9.89E-04	1.03E-02	2.85E-03
Total	4.74E	9.06E-01	9.32E-04	7.69E-07	1.31E-02	8.4E-05	4.01E-03	4.3E-02	1.49E-02
External Impacts - D (not in totals)	-3.53E-1	2.06E-2	2.2E-4	-1.8E-7	-7.7E-4	-7.3E-6	-1.9E-4	-2.1E-3	-1.3E-3

Parameters describing resource input

Impact	PERE	PERM	PERT	PENRE	PENRM	PENRT
Category	MJ	MJ	MJ	MJ	MJ	MJ
Product stage	2.57E	N/A	2.57E	3.36E+01	3.82E+01	7.18E+01
Construction stage	2.91E-02	N/A	2.91E-02	3.12E	N/A	3.12E
Use stage	N/A	N/A	N/A	N/A	N/A	N/A
End of life stage	2.6E-02	N/A	2.6E-02	2.74E	N/A	2.74E
Total	2.62E	N/A	2.62E	3.94E+01	3.82E+01	7.77E+01
External impact (D)	7.78E-02	N/A	7.78E-02	-4.86E	-1.43E+01	-1.92E+01

- **PERE** = Use of renewable primary energy excluding renewable primary energy used as raw materials.
- **PERM** = Use of renewable primary energy resources used as raw materials.
- **PERT** = Total use of renewable primary energy resources.
- **PENRE** = Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials.
- **PENRM** = Use of non-renewable primary energy resources used as raw material.
- **PENRT** = Total use of non-renewable primary energy resource.

Parameters describing different waste categories

En internetel energy ber	Hazardous waste	Non-hazardous waste	Nuclear waste
Environmental parameters	kg	kg	kg
Product stage	4.51E-02	1.44E	8.29E-05
Construction stage	1.52E-02	1.54E	2.08E-05
Use stage	N/A	N/A	N/A
End of life stage	3E-03	6.29E-02	1.6E-05
Total	6.33E-02	3.04E	1.20E-04
External impacts (D)	1.14E-02	5E-01	1.29E-05

Parameters describing further output material flows

Parameters describing output material flows	Unit	Parameter unit expressed per functional unit
Components for re-use	kg	N/A
Materials for recycling	kg	1.97E
Materials for energy recovery	kg	N/A

Scenarios and additional technical information

Scenario	Parameter	Parameter unit	
A2 – Transportation to manufacturer	Vehicle type used for transport or fuel type consumption of vehicle	HDPE pellets are transported overseas via cargo followed by lorry to manufacturers. Environmental burdens created during transport are calculated with "Transport, freight, sea, container ship" and records "Transport, freight, lorry 16-32 ton, EUR05".	
A3 – Manufacturing	Energy usage during production	0.618kW of electricity used during production for 1kg of plastic HDPE Pipe.	
A4 – Transportation to building site	Vehicle type used for transport or fuel type consumption of vehicle	Since MetroDrain pipes can be sent anywhere, the distance of 100km was used, that can be extrapolated if needed. Fuel consumption is specified in Ecolnvent V3.6 data records "Transport, freight, lorry 16-32 ton, EUR05" at 75% capacity utilisation.	
A5 – Installation into building/location	Energy usage during installation	0.474kW of diesel burned in trench production and backfill using Ecolnvent V3.6 "Diesel, burned in building machine".	
	Waste on building site after product installation	0.5kg of plastic packaging waste for recycling along with 1kg of wooden pallet. 50km (Number can be extrapolated based on actual distance) to nearest recycling plant using "Transport, freight, lorry 16-32 ton, EUR05".	
	Emissions to ambient air, soil, and water	There are no direct emissions at the trench as emission are from extraction, transportation and mechanical and energy or waste management and treatment. These are included in the Ecolnvent data records used for creating the environmental impacts.	
C1-C4	End of Life Treatment	After the service life of 50 years the HDPE pipes is removed and reused where possible. Unusable parts are incinerated; however, the entire product can be recycled. This leads to 100% of the product being sent 50km (Number can be extrapolated based on actual distance) to the nearest recycling and/or regranulation plant. This is calculated using "Transport, freight, lorry 16-32 ton, EUR05".	

References

- BBA Approval Inspection Testing Certification . (2021). Naylor MetroDrain twinwall Highway Drainage System. BBA.
- BSI. (2020). Environmental Management Life cycle assessment Principles and framework. BSI Standards Publication.
- BSI. (2021). BS EN 15804:;2012+A2:2019: unstainability of construction works Environmental product declarations Core rules for the product category of construction products . BSI.
- BSI. (2022). PAS 2050:2011: Specification for the assessment of the life cycle greenhouse gas emissions of goods and services.
- GOV.UK. (2022). Greenhouse gas reporting : conversion factors 2021.
- Standards for Highways. (2020, February). Manual of Contract Documents for Highway Works Volume 1 Series 500 specification for Highway Works. Retrieved from Standards for Highways: https://www.standardsforhighways.co.uk/ha/standards/mchw/vol1/pdfs/MCHW%20Vol%201%20Seri es%20500%20web%20PDF.pdf
- WRAP. (2021, February). Carbon Waste and Resources Metric . Retrieved from Wrap.org.uk: https://wrap.org.uk/resources/report/carbon-waste-and-resources-metric

